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Abstract —A variety of substrate materials used in practice exhibit

auisotropic behavior which is either inherent to the material or may be

acquired during the manufacturing process. The development of highly

accurate models for the propagation properties of integrated circuit stric-

tures rrecessitates careful accounting of substrate anisotropy. In this paper,

an algorithm is developed which models structures such as microstrip,

inverted microstrip, slotlines, and coplanar waveguides on anisotropic

substrates. The model includes cases where the circuit has a cover or is

enclosed in a rectangular shield.

I. INTRODUCTION

A NISOTROPY IS either an inherent property of a

substrate material or may be acquired during the

manufacturing process. Uniaxial crystalline substrates (such

as, e.g., sapphire and quartz) belong to the former while

fiber or ceramic impregnated plastics (such as, e.g.,

Epsilam-10) belong to the latter category. It has been

clarified that when anisotropy is ignored in the develop-

ment of design methods for single and coupled microstrip

on Epsilam-10, an error is introduced which becomes sig-

nificant for small linewidths and small line separation [1].

It follows that the development of highly accurate models

for integrated circuit structures should account for sub-

strate anisotropy. In addition, in certain applications of

coupled line structures, anisotropy may prove beneficial in

equalizing even–odd-mode phase velocities and reducing

geometry tolerance sensitivity [2]. The dispersive behavior

of rnicrostrip [3]–[5], coupled slots [6], and coplanar wave-

guides [7] has been investigated to some extent including

the case of microstrip discontinuities. This paper addresses

the problem in a more generalized fashion in that a tech-

nique is developed which may encompass all useful struc-

tures with or without cover or with a rectangular shield.
Furthermore, the algorithm discussed in this paper includes

the possibility of multiple anisotropic layers, each of which

is characterized by a diagonalized tensor permittivity ~.

The method consists of developing the LSE- and LSM-

mode field solution to derive the Green’s function for the
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structure under consideration. Subsequently, the Galerkin

method is used to obtain the longitudinal and transverse

current density or aperture electric-field components. In

this manner, the dispersive behavior of several structures is

obtained to show the versatility of the method. The error

introduced when anisotropy is neglected is also discussed.

II. THE FOURIER SERIES SPECTRUM METHOD

The typical structures under consideration are shown in

Fig. 1, where coupled microsttip and coplanar waveguide

geometries are depicted with multiple anisotropic layers.

The relative permittivity of the ith layer is given by

where cj’) is the relative permittivity on the xz-plane and,

therefore, ~jz) = c$!~= c~~. The sides of the rectangular shield

may be chosen as electric or magnetic walls so as to

simulate a closed or an open structure.

The dispersive properties of structures, such as those

shown in Fig. 1, are obtained by solving Maxwell’s equa-

tions in terms of LSE and LSM modes in the Fourier

domain [5]. In this case, the finite even–odd-mode Fourier

representation of the electromagnetic field is adopted by

erecting a symmetric magnetic or electric wall at the plane

x = O. For the geometries of Fig. 1, the finite Fourier

transforms are defined in each layer as

and

where the upper case corresponds to a magnetic and the

lower case to an electric wall at x = O. The choice of k.

also enforces a magnetic and electric wall at x = a, that is,

at the side wall. The combination of (2) and (3) and k.

leads to an open or closed structure, when k. is chosen as

n m/a or (2n – 1) ~/2a, respectively. If the lower case of (2)
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Fig. 1. Coplanar waveguide and coupled microstnp geometries on an-
isotropic layers. (a) Coplanar waveguide. (b) Coupled microstnp.

and (3) and k. = n n/a are chosen, then this corresponds

to the odd-mode for the coupled microstrip lines or to a

single microstrip line in the closed waveguide geometry.

The other combination generates the case for an open

side-wall geometry and it is useful for simulating an open

structure for slot lines or other waveguiding systems.
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where #YTM satisfies the wave equation

The solution to the multiple boundary layer problem yields

Hil=[z%Ttl
or inversely ,

.?3’=[::Wf!ilc1,-where #X an #z are finite Fourier transforms

metallic strip current density components and #,

(14)

(15)

for the

ancl &X

represent the finite Fourier transforms of the slot aperture

electric-field components. The various terms involved in

(16) and (17) are given by
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* k.
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Gjl’= – H21/A and G22 = H1l/A (19)

where

A = H11HZ2 – H12H21. (20)

In addition

Fl(kn, ~) = [l/’f,l + (a$’)~,zfts +l)\(~t2 + ~t3)] (21)
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The choice between (16) and (17) depends on whether

the structure of Fig. l(a) or (b) is considered, respectively.
Since duality applies, the expansion functions for ,EX(X)

and J=(x) may be chosen alike. Similarly, this is true for
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E.(x) and JX(X). For the former case, the chosen field or

current distribution satisfies the edge condition, i.e., the

expansion functions are selected to obey the Maxwell

functional dependence across the aperture or across the

metallic strip, while for the latter case, the chosen expan-

sion functions are like sinusoids forced to zero value at the

slot or metallic strip edges. In the application of the

Galerkin method, a variety of expansion functions, such as

Legendre polynomials, Chebyshev polynomials, and pulse

functions, have. been employed in conjunction with the

Maxwell dependence to satisfy the edge condition, and to

represent EX (x ) on a slot or J:(x) on a metallic strip.

These choices lead to solutions which involve special func-

tions such as Bessel functions. Solutions in terms of special

functions typically increase the required CPU time and

therefore decrease the efficiency of the algorithm. To en-

hance the algorithm efficiency, a simple polynomial expan-

sion is made for EX(X) or J=(x) and sine basis functions

are chosen for the E,(x) or JX(X ) distributions. These

polynomial expansions introduce further numerical sim-

plifications since simple recurrence relations may be devel-

oped, thereby contributing to further minimization of CPU

computation time.

The aperture field or metallic strip current representa-

tions are chosen as

for slots, while for microstrip structures

(33)

The “ -” symbol in (33) indicates the Fourier transformed

basis functions given by (28) and (29). A recurrence rela-

tion can be easily derived for these Fourier transforms.

Thus, the recurrence relations of the j~y) basis functions

are derived as

NL) =;[(-l)k-ww)
–:os{kn(w+s/2)1]

+ (k-1)
~[sin{k.(~+ s/2)}
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—

(k~w\2)2
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for the sine Fourier transform and

~:(k.) = ~[sin{k.(~ +.s/2)}
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and
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( 1
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set yields

consist of

and

( ‘agk(x)=sin km (30)
for the corresponding cosine Fourier transform.

It is observed that the choice of the { ~~(x)}

recurrence relations in the Fourier domain which

simple sine and cosine functions, thereby contributing to

the development of an efficient numerical algorithm. It is

also interesting to note that a Maxwell distribution may be

approximated readily with 6 or 7 basis function terms.

Application of the Galerkin method yields a system of

(N+ M) X (N + M) eigenequations to be solved. The dis-

persion relation for c,ff as a function of ~/kO is obtained

by solving the determinant

III. CHARACTERISTIC IMPEDANCE

(31)
The characteristic impedance for microstrip is computed

in this section by considering the definition ZO = V(kO)/

I(kO). For this calculation, the voltage and longitudinal

current are given by

where each element is given for the magnetic wall case at

the center by

(36)

(32) and

N 2cn
I(ko)= ~ —

~=1 n
(37)
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TABLE I

t I

2b/hl h2/hl s/hi w/hi Phase Ref [2) Dynamic
veloclty solutlon

“;, 0.’j629 0.9632

6.2 0.8 1.6 0.58
v;h 0.9646 0.9647

.Fh 0.9323 0.9324
12.0 2.0 1.6 0.55

v;h 0.9333 0.9333

respectively. This definition of 20 has been compared with

the results reported for a single rnicrostrip line on sapphire,

and the agreement is excellent [8]. Also, a comparison with

the computation for Z:, Z: for coupled microstrip lines on

isotropic substrates [9], as computed by using the defini-

tion 20= 2P/I 2, yields a 0.5-percent difference for hi~er

frequencies and a 1.4-percent difference for lower frequen-

cies for both the even- and odd-mode cases (see Fig. 6).

This algorithm has also been tested against quasi-static

calculations [1] with an agreement better than 0.1 percent.
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IV. NUMERICAL RESULTS AND DISCUSSION (a)

The results obtained with the algorithm developed in this

article are within 0.5-percent convergence accuracy. Table I

makes a comparison of the algorithm developed herein

with the quasi-static results for coupled microstrip with

cover on a sapphire substrate with an alumina overlay [2].

For thi’s case, reference to Fig. l(b) indicates that ~$1~= 9.4,

~tl) =11.6, c(z) = c~~ = 9.9, while c~~ = t~~ = c~~ = c$~ =1.

TY’ simulate’; structure which is open on the sides, the

dimension 2a has been chosen as 20. The results shown in

Table I indicate agreement to within 0.05 percent between

the two methods for both even- and odd-mode phase

velocities. For these computations, the choice N = 2, M =

10, and n~u~ = 1000 yields 0.05-percent convergence accu-

racy. ‘

Fig. 2(a) demonstrates the dispersive behavior of Ag/X ~

for coupled slotlines on a saphire substrate. Comparison of

this result with the dispersive behavior of coupled slots as

obtained by the equivalent network method [6] indicates no

visible discrepancy between the two methods. For this

particular case N =6, M =6, N,u~ = 300, and in order to

simulate an open structure 2a = 20 while 2b = 21. In ad-

dition, it is observed that the dominant mode (odd mode)

is obtained with electric side walls at x = ~ a, while the

even mode results if the side walls at x = ~ a are perfect

magnetic conductors. Fig. 2(b) compares the c~f~ for even

and odd modes for an Epsilam-10 substrate when ani-

sotropy is accounted for or when it is neglected. It is

clearly observed that with increasing frequency, the error

when anisotropy is neglected increases. For the dominant
mode, it is observed that it is 11.6 percent at low frequen-

cies (kOh z ~ O) and it increases to 13.3 percent when

koh z = 0.6. This example demonstrates the significance of

including substrate anisotropy in the development of highly

accurate design algorithms for microwave and millimeter-

wave circuits. Fig. 3 illustrates the dispersive behavior of
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Fig. 2. (a) Dispersion characteristics of coupled slotlines on sapphire
substrate. (b) Dispersion characteristics of coupled slotlines.

c~ff for a slotline on sapphire. Of interest in this particular

case are the waveguide modes shown in dashed lines. The

first waveguide mode is generated by the substrate-filled

portion of the waveguide, while the’ second, by the entire

structure. The cutoff frequencies for these modes may be
predicted by considering the cefrfilled waveguide mode

and the transverse resonance method. The results are ob-

tained as Icol = 0.97 with C.ff = ~ = 10.44. Also, the
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Fig. 3. Dispersion characteristics of single slotline for open and closed
geometry.

TABLE II
Ck VALUES

Even mode Odd mode

.2477 .0869

.0883 – .0494

.0518 .1895
– .2894 .1728
– .3373 – .7139

.5113 – .2935
Lo 1.0

transverse resonance method approximates kC2 here as

(77 <eff(a–d)+d
k c2-— b )

-2.84
f ~ffa

which agrees with the computed result. In the above ex-

pression, a is the width, b is the height, and d is the

substrate thickness.

The comparison to Epsilam 10 has also been shown for

the magnetic wall case: an open structure is simulated. The

dominant mode for this case exhibits a y-directed field

component dominated by the CYY factor. The computed

result shows the asymptotic behavior of the effective dielec-

tric constant to the CYY component of the permittivity

tensor.

Fig. 6 demonstrates the comparison to E1-Shexbiny’s

results [8]. The effective dielectric constant and characteris-

tic impedance show excellent agreement. The current dis-

tribution for low frequency is also shown where seven basis

functions have been chosen here. The current density ap-

proximates the Maxwell current distribution with excellent

agreement.
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Fig. 4. Quasi-static characteristics of inverted microstrip lines.
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The polynomial coefficients C~ are found as shown in

Table II. Table I demonstrates that this choice of a simple

set of basis functions yields excellent results for the current

distribution while at the same time it provides for a very

efficient numerical algorithm.

Finally, in order to emphasize the versatility of this

technique, the low-frequency behavior of Ceff is demon-

strated’ in Figs. 4 and 5 for inverted coupled microstrip and

for suspended toppled microstrip lines on isotropic and

anisotropic Epsilam-10 substrates.

V. CONCLUSION

This paper presents a generalized approach to analyze

the dispersive properties of integrated circuit structures on

multiple layers of anisotropic materials. The algorithm

developed by this method includes as limiting cases geome-
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tries of integrated’waveguiding structures with or without

cover, as well as the case of a rectangular shield. The

results presented in this paper are within 0.5-percent con-

vergence accuracy. Finally, it has been demonstrated that

neglecting substrate anisotropy leads to serious errors in

the
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